Safety Data Sheet

OR93BL (Flak Jacket) Part A

Section 1 – Identification

Product name: OR93BL (Flak Jacket) Part A

Recommended use of the chemical and restrictions on use

Identified uses: For industrial use. Component(s) for the manufacture of urethane polymers. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your sales or technical service representative.

COMPANY IDENTIFICATION

Oak Ridge Foam & Coating Systems, Inc 575 Commercial Ave Green Lake, WI 54941

Customer Information Number: 800-625-9577

EMERGENCY TELEPHONE NUMBER

24-Hour Emergency Contact: CHEMTREC 800-424-9300

Section 2 - Hazards Identifiation

Hazard classification

This material is hazardous under the criteria of the Federal OSHA Hazard Communication Standard 29CFR 1910.1200.

Acute toxicity - Category 4 - Inhalation

Skin irritation - Category 2

Eye irritation - Category 2A

Respiratory sensitisation - Category 1

Skin sensitisation - Category 1

Specific target organ toxicity - single exposure - Category 3

Specific target organ toxicity - repeated exposure - Category 2 - Inhalation

Label elements

Hazard pictograms

Signal word: Danger

Hazards

Causes skin irritation.

May cause an allergic skin reaction.

Causes serious eye irritation.

Harmful if inhaled.

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

May cause respiratory irritation.

May cause damage to organs (Respiratory Tract) through prolonged or repeated exposure if inhaled.

Precautionary statements

Prevention

Do not breathe dust/ fume/ gas/ mist/ vapours/ spray.

Wash skin thoroughly after handling.

Use only outdoors or in a well-ventilated area.

Contaminated work clothing should not be allowed out of the workplace.

Wear protective gloves/ eye protection/ face protection.

In case of inadequate ventilation wear respiratory protection.

Response

IF ON SKIN: Wash with plenty of soap and water.

IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER/doctor if you feel unwell.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

If skin irritation or rash occurs: Get medical advice/ attention.

If eye irritation persists: Get medical advice/ attention.

If experiencing respiratory symptoms: Call a POISON CENTER/doctor.

Take off contaminated clothing and wash before reuse.

Storage

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Disposal

Dispose of contents/ container to an approved waste disposal plant.

Other hazards

No data available

Section 3 - Hazards Identification

This product is a mixture

Hazardous Components

Components	CAS-No.	Concentration
Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer	96328-90-4	>= 30.0 - <= 60.0 %
Methylenediphenyl diisocyanate,	39310-05-9	>= 10.0 - <= 30.0 %
homopolymer		
Methylenediphenyl diisocyanate	26447-40-5	>= 30.0 - <= 60.0 %
4,4' -Methylenediphenyl	101-68-8	>= 15.0 - <= 40.0 %
diisocyanate		
Triethyl phosphate	78-40-0	>= 0.5 - <= 1.5 %

Note: CAS 101-68-8 is an MDI isomer that is part of CAS 26447-40-5.

Section 4 – First Aid Measures

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Skin contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands. Suitable emergency safety shower facility should be available in work area.

Eye contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Most important symptoms and effects, both acute and delayed: Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information.

Indication of any immediate medical attention and special treatment needed

Notes to physician: Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. If you are sensitized to diisocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. Cholinesterase inhibition has been noted in human exposure but is not of benefit in determining exposure and is not correlated with signs of exposure. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient. Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome).

Section 5 – Fire Fighting Measures

Suitable extinguishing media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Unsuitable extinguishing media: Do not use direct water stream. May spread fire.

Special hazards arising from the substance or mixture

Hazardous combustion products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen cyanide. Carbon monoxide. Carbon dioxide.

Unusual Fire and Explosion Hazards: Product reacts with water. Reaction may produce heat and/or gases. This reaction may be violent. Container may rupture from gas generation in a fire situation. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Dense smoke is produced when product burns.

Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Water is not recommended, but may be applied in large quantities as a fine spray when other extinguishing agents are not available.

Do not use direct water stream. May spread fire. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out. Contain fire water run-off if possible. Fire water runoff, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special protective equipment for firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective firefighting clothing (includes firefighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during firefighting operations. If contact is likely, change to full chemical resistant firefighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

Section 6 – Accidental Release Measures

Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Refer to section 7, Handling, for additional precautionary measures. Keep personnel out of low areas. Keep upwind of spill. Spilled material may cause a slipping hazard. Ventilate area of leak or spill. If available, use foam to smother or suppress. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Vermiculite. Sand. Clay. Do NOT use absorbent materials such as: Cement powder (Note: may generate heat). Collect in suitable and properly labeled open containers. Do not place in sealed containers. Suitable containers include: Metal drums. Plastic drums. Polylined fiber pacs. Wash the spill site with large quantities of water. Attempt to neutralize by adding suitable decontaminant solution: Formulation 1: sodium carbonate 5 - 10%; liquid detergent 0.2 - 2%; water to make up to 100%, OR Formulation 2: concentrated ammonia solution 3 - 8%; liquid detergent 0.2 - 2%; water to make up to 100%. If ammonia is used, use good ventilation to prevent vapor exposure. Contact your supplier for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

Section 7 – Storage and Handling

Precautions for safe handling: Avoid breathing vapor. Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Use with adequate ventilation. Wash thoroughly after handling. Keep container tightly closed. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Conditions for safe storage: Store in a dry place. Protect from atmospheric moisture. Do not store product contaminated with water to prevent potential hazardous reaction. See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

Storage stability

Storage temperature: Storage Period:

20 - 25 °C (68 - 77 °F) 6 Month

Section 8 – Exposure Controls/Personal Protection

Control parameters

Exposure limits are listed below, if they exist.

Component	Regulation	Type of listing	Value/Notation
Methylenediphenyl	Dow IHG	TWA	0.005 ppm
Diisocyanate	Dow IHG	STEL	0.02 ppm
4,4' -Methylenediphenyl	Dow IHG	TWA	0.005 ppm
Diisocyanate	Dow IHG	STEL	0.02 ppm
	ACGIH	TWA	0.005 ppm
	OSHA Z-1	С	0.2 mg/m3 0.02 ppm
Triethyl phosphate	US WEEL	TWA	7.45 mg/m3

Exposure controls

Engineering controls: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure.

Individual protection measures

Eye/face protection: Use chemical goggles.

Skin protection

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber. Chlorinated polyethylene. Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Examples of acceptable glove barrier materials include: Neoprene. Nitrile/butadiene rubber ("nitrile" or "NBR"). Polyvinyl chloride ("PVC" or "vinyl"). Viton. NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Other protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Respiratory protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved airpurifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure self-contained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

Section 9 – Physical Properties

Appearance

Physical state Liquid.
Color Yellow
Odor Musty

Odor Threshold 0.4 ppm *Based on Literature for MDI.* Odor is inadequate

warning of excessive exposure.

pH Not applicable

Melting point/rangeNo test data availableFreezing pointNo test data availableBoiling point (760 mmHg)Decomposes before boilingFlash point closed cup> 150 °C (> 302 °F) Estimated.

Evaporation Rate

(Butyl Acetate= 1) No test data available
Flammability (solid, gas) Not applicable to liquids
Lower explosion limit No test data available
Upper explosion limit No test data available

Vapor Pressure < 0.000012 hPa at 25 °C (77 °F) Literature

Relative Vapor Density (air = 1) No test data available

Relative Density (water = 1) 1.12 - 1.16 at 25 °C (77 °F) / 25 °C *ASTM D891*

Water solubility insoluble, reacts, evolution of CO2

Partition coefficient:

noctanol/waterNo data availableAuto-ignition temperatureNo test data availableDecomposition temperatureNo data available

 Dynamic Viscosity
 600 - 700 mPa.s at 25 °C (77 °F) ASTM D4878

 Kinematic Viscosity
 400 - 800 mm2/s at 25 °C (77 °F) ASTM D4878

Explosive properties Not explosive

Oxidizing properties No

Molecular weight No test data available

NOTE: The physical data presented above are typical values and should not be construed as a specification.

Section 10 - Stability and Reactivity

Reactivity: Diisocyanates react with many materials and the rate of reaction increases with temperature as well as increased contact; these reactions can become violent. Contact is increased by stirring or if the other material mixes with the diisocyanate. Diisocyanates are not soluble in water and sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat.

Chemical stability: Stable under recommended storage conditions. See Storage, Section 7. **Possibility of hazardous reactions:** Can occur. Exposure to elevated temperatures can cause product to decompose and generate gas. This can cause pressure build-up and/or rupturing of closed containers. Polymerization can be catalyzed by: Strong bases. Water.

Conditions to avoid: Exposure to elevated temperatures can cause product to decompose. Generation of gas during decomposition can cause pressure in closed systems. Pressure build-up can be rapid. Avoid moisture. Material reacts slowly with water, releasing carbon dioxide which can cause pressure buildup and rupture of closed containers. Elevated temperatures accelerate this reaction.

Incompatible materials: Avoid contact with: Acids. Alcohols. Amines. Water. Ammonia. Bases. Metal compounds. Moist air. Strong oxidizers. Diisocyanates react with many materials and the rate of reaction increases with temperature as well as increased contact; these reactions can become violent. Contact is increased by stirring or if the other material mixes with the diisocyanate. Diisocyanates are not soluble in water and sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat. Avoid contact with metals such as: Aluminum. Zinc. Brass. Tin. Copper. Galvanized metals. Avoid contact with absorbent materials such as: Moist organic absorbents. Avoid unintended contact with polyols. The reaction of polyols and isocyanates generate heat.

Hazardous decomposition products: Decomposition products depend upon temperature, air supply and the presence of other materials. Gases are released during decomposition.

Section 11 - Toxicological Information

Toxicological information appears in this section when such data is available.

Acute toxicity

Acute oral toxicity

Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Gastrointestinal irritation.

As product: Single dose oral LD50 has not been determined.

LD50, Rat, > 2,000 mg/kg Estimated.

Acute dermal toxicity

Prolonged skin contact is unlikely to result in absorption of harmful amounts.

As product: The dermal LD50 has not been determined.

LD50, Rabbit, > 2,000 mg/kg Estimated.

Acute inhalation toxicity

At room temperature, vapors are minimal due to low volatility. However, certain operations may generate vapor or mist concentrations sufficient to cause respiratory irritation and other adverse effects. Such operations include those in which the material is heated, sprayed or otherwise mechanically dispersed such as drumming, venting or pumping. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates.

As product: The LC50 has not been determined.

Skin corrosion/irritation

Prolonged contact may cause skin irritation with local redness.

May stain skin.

Material may stick to skin causing irritation upon removal.

Serious eye damage/eye irritation

May cause moderate eye irritation.

May cause slight temporary corneal injury.

Sensitization

Skin contact may cause an allergic skin reaction.

Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.

May cause allergic respiratory reaction.

MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized.

Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Specific Target Organ Systemic Toxicity (Single Exposure)

May cause respiratory irritation.

Specific Target Organ Systemic Toxicity (Repeated Exposure)

Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Contains a component which is reported to be a weak organophosphate-type cholinesterase inhibitor. Excessive exposure may produce organophosphate type cholinesterase inhibition.

Signs and symptoms of excessive exposure may be headache, dizziness, incoordination, muscle twitching, tremors, nausea, abdominal cramps, diarrhea, sweating, pinpoint pupils, blurred vision, salivation, tearing, tightness in chest, excessive urination, convulsions.

Carcinogenicity

Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Teratogenicity

In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother.

Reproductive toxicity

In animal studies on component(s), effects on reproduction were seen only at doses that produced significant toxicity to the parent animals.

Mutagenicity

For the minor component(s): In vitro genetic toxicity studies were negative in some cases and positive in other cases. Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative.

Aspiration Hazard

Based on physical properties, not likely to be an aspiration hazard.

COMPONENTS INFLUENCING TOXICOLOGY:

Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer Acute inhalation toxicity

At room temperature, vapors are minimal due to low volatility. However, certain operations may generate vapor or mist concentrations sufficient to cause respiratory irritation and other adverse effects. Such operations include those in which the material is heated, sprayed or otherwise mechanically dispersed such as drumming, venting or pumping. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates.

The LC50 has not been determined.

Methylenediphenyl diisocyanate, homopolymer

Acute inhalation toxicity

For similar material(s): 4,4'-Methylenediphenyl diisocyanate (CAS 101-68-8). LC50, Rat, 1 Hour, Aerosol, 2.24 mg/l

Methylenediphenyl diisocyanate

Acute inhalation toxicity

LC50, Rat, 1 Hour, dust/mist, 2.24 mg/l

4,4' -Methylenediphenyl diisocyanate

Acute inhalation toxicity

LC50, Rat, 1 Hour, dust/mist, 2.24 mg/l

Triethyl phosphate

Acute inhalation toxicity

LC50, Rat, 4 Hour, dust/mist, > 2.35 mg/l No deaths occurred at this concentration.

Section 12 - Ecological Information

Ecotoxicological information appears in this section when such data is available.

Toxicity

Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer

Acute toxicity to fish

Not expected to be acutely toxic to aquatic organisms.

Methylenediphenyl diisocyanate, homopolymer

Acute toxicity to fish

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species.

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Based on information for a similar material:

LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

Based on information for a similar material:

EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants

Based on information for a similar material:

NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent

Toxicity to bacteria

Based on information for a similar material:

EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l

Toxicity to soil-dwelling organisms

EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg

Toxicity to terrestrial plants

EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l

EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l

Methylenediphenyl diisocyanate

Acute toxicity to fish

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species.

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Based on information for a similar material:

LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

Based on information for a similar material:

EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants

Based on information for a similar material:

NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent

Toxicity to bacteria

Based on information for a similar material:

EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l

Toxicity to soil-dwelling organisms

EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg

Toxicity to terrestrial plants

EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l

EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l

4,4' -Methylenediphenyl diisocyanate

Acute toxicity to fish

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species.

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Based on information for a similar material:

LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

Based on information for a similar material:

EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants

Based on information for a similar material:

NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent

Toxicity to bacteria

Based on information for a similar material:

EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l

Toxicity to soil-dwelling organisms

EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg

Toxicity to terrestrial plants

EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l

EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l

Triethyl phosphate

Acute toxicity to fish

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

LC50, Leuciscus idus (Golden orfe), static test, 48 Hour, 2,140 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

EC50, Daphnia magna (Water flea), static test, 48 Hour, 350 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants

EC50, Desmodesmus subspicatus (green algae), 72 Hour, Growth rate inhibition, 900 mg/l, OECD Test Guideline 201

Toxicity to bacteria

EC50, activated sludge, Respiration inhibition, 30 min, > 2,985 mg/l, OECD 209 Test

Persistence and degradability

Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer

Biodegradability: Expected to degrade slowly in the environment.

Methylenediphenyl diisocyanate, homopolymer

Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

10-day Window: Not applicable

Biodegradation: 0 % **Exposure time:** 28 d

Method: OECD Test Guideline 302C or Equivalent

Methylenediphenyl diisocyanate

Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

10-day Window: Not applicable

Biodegradation: 0 % **Exposure time:** 28 d

Method: OECD Test Guideline 302C or Equivalent

4,4' -Methylenediphenyl diisocyanate

Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

10-day Window: Not applicable

Biodegradation: 0 % **Exposure time:** 28 d

Method: OECD Test Guideline 302C or Equivalent

Triethyl phosphate

Biodegradability: Material is ultimately biodegradable (reaches > 70% mineralization in

OECD test(s) for inherent biodegradability).

10-day Window: Not applicable

Biodegradation: > 90 % **Exposure time:** 28 d

Method: OECD Test Guideline 302B or Equivalent **Theoretical Oxygen Demand:** 1.58 mg/mg

Bioaccumulative potential

Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer

Bioaccumulation: In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Methylenediphenyl diisocyanate, homopolymer

Bioaccumulation: Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Bioconcentration factor (BCF): 92 Cyprinus carpio (Carp) 28 d

Methylenediphenyl diisocyanate

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Bioconcentration factor (BCF): 92 Cyprinus carpio (Carp) 28 d

4,4' -Methylenediphenyl diisocyanate

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Bioconcentration factor (BCF): 92 Cyprinus carpio (Carp) 28 d

Triethyl phosphate

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient: n-octanol/water(log Pow): 0.80 Measured

Mobility in soil

Methylenediphenyl diisocyanate, polypropyleneglycol, copolymer

In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Methylenediphenyl diisocyanate, homopolymer

In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Methylenediphenyl diisocyanate

In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

4,4' -Methylenediphenyl diisocyanate

In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Triethyl phosphate

Potential for mobility in soil is very high (Koc between 0 and 50).

Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.

Partition coefficient(Koc): 48 Estimated.

Section 13 – Disposal Consideration

Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer. Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section 10 Regulatory Information, MSDS Section 15

Section 14 – Transportation Information

DOT

Proper shipping name Environmentally hazardous substance, liquid, n.o.s.(MDI)

UN number UN 3082

Class 9

Packing group III

Reportable Quantity MDI

Classification for SEA transport (IMO-IMDG):

Not regulated for transport

Transport in bulk Consult IMO regulations before transporting ocean bulk according to Annex I or II of MARPOL 73/78 and the IBC or IGC Code

Classification for AIR transport (IATA/ICAO):

Not regulated for transport

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

Section 15 - Regulatory Information

OSHA Hazard Communication Standard

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Acute Health Hazard

Chronic Health Hazard

Reactivity Hazard

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372.

Components4,4' -Methylenediphenyl diisocyanate

CASRN
101-68-8

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA)

Section 103

Components CASRN RQ

4,4' -Methylenediphenyl diisocyanate 101-68-8 5000 lbs RQ

Pennsylvania Worker and Community Right-To-Know Act:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

United States TSCA Inventory (TSCA)

All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

Section 16 - Other Information

The method of hazard communication for Oak Ridge Foam & Coating Systems, Inc is comprised of Product Labels and Safety Data Sheets.

This information is furnished without warranty, expressed or implied. This information is believed to be accurate to the best knowledge of Oak Ridge Foam & Coating Systems, Inc. The information in this SDS relates only to the specific material designated herein. Oak Ridge Foam & Coating Systems, Inc assumes no legal responsibility for use of or reliance upon the information in this SDS.

Safety Data Sheet

OR93BL (Flak Jacket) Part B

Section 1 - Identification

Product name: OR93BL (Flak Jacket) Part B

Recommended use of the chemical and restrictions on use

Identified uses: For industrial use. Component(s) for the manufacture of urethane polymers. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your sales or technical service representative.

COMPANY IDENTIFICATION

Oak Ridge Foam & Coating Systems, Inc 575 Commercial Ave Green Lake, WI 54941

Customer Information Number: 800-625-9577

EMERGENCY TELEPHONE NUMBER

24-Hour Emergency Contact: CHEMTREC 800-424-9300

Section 2 - Hazards Identifiation

Hazard classification

This material is hazardous under the criteria of the Federal OSHA Hazard Communication Standard 29CFR 1910.1200.

Acute toxicity - Category 4 - Oral

Eye irritation - Category 2B

Carcinogenicity - Category 2

Specific target organ toxicity - repeated exposure - Category 2 - Oral

Label elements

Hazard pictograms

Signal word: Warning

Hazards

Harmful if swallowed.

Causes eye irritation.

Suspected of causing cancer.

May cause damage to organs through prolonged or repeated exposure if swallowed.

Precautionary statements

Prevention

Obtain special instructions before use.

Do not handle until all safety precautions have been read and understood.

Do not breathe dust/fume/gas/mist/vapours/spray.

Wash skin thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use personal protective equipment as required.

Response

IF SWALLOWED: Call a POISON CENTER or doctor/ physician if you feel unwell. Rinse mouth.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

IF exposed or concerned: Get medical advice/ attention.

If eye irritation persists: Get medical advice/ attention.

Storage

Store locked up.

Disposal

Dispose of contents/ container to an approved waste disposal plant.

Other hazards

no data available

Section 3 - Hazards Identification

This product is a mixture

Hazardous Components

Component	CASRN	Concentration
Polyether Polyols	Trade	>=60.0 - <=10.0%
	Secret	
Polyethylene Glycol	25322-68-3	>= 1.0 - <= 10.0 %
Diethyltoluenediamine (DETDA)	68479-98-1	>= 7.0 - <= 13.0 %
Diethylene Glycol	111-46-6	>= 5.0 - <= 10.0 %
Castor Oil	8001-79-4	>= 1.0 - <= 5.0 %
Carbon Black	1333-86-4	>= 0.1 - <=1.0%

Section 4 - First Aid Measures

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air; if effects occur, consult a physician.

Skin contact: Immediately flush skin with water while removing contaminated clothing and shoes. Get medical attention if symptoms occur. Wash clothing before reuse. Destroy contaminated leather items such as shoes, belts, and watchbands.

Eye contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist.

Ingestion: Do not induce vomiting. Seek medical attention immediately. If person is fully conscious give 1 cup or 8 ounces (240 ml) of water. If medical advice is delayed and if an adult has swallowed several ounces of chemical, then give 3-4 ounces (1/3-1/2 Cup) (90-120 ml) of hard liquor such as 80 proof whiskey. For children, give proportionally less liquor at a dose of 0.3 ounce (1 1/2 tsp.) (8 ml) liquor for each 10 pounds of body weight, or 2 ml per kg body weight [e.g., 1.2 ounce (2 1/3 tbsp.) for a 40 pound child or 36 ml for an 18 kg child].

Most important symptoms and effects, both acute and delayed: Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information.

Indication of any immediate medical attention and special treatment needed

Notes to physician: Due to structural analogy and clinical data, this material may have a mechanism of intoxication similar to ethylene glycol. On that basis, treatment similar to ethylene glycol intoxication may be of benefit. In cases where several ounces (60 - 100 ml) have been ingested, consider the use of ethanol and hemodialysis in the treatment. Consult standard literature for details of treatment. If ethanol is used, a therapeutically effective blood concentration in the range of 100 - 150 mg/dl may be achieved by a rapid loading dose followed by a continuous intravenous infusion. Consult standard literature for details of treatment. 4-Methyl pyrazole (Antizol®) is an effective blocker of alcohol dehydrogenase and should be used in the treatment of ethylene glycol (EG), di- or triethylene glycol (DEG, TEG), ethylene glycol butyl ether (EGBE), or methanol intoxication if available. Fomepizole protocol (Brent, J. et al., New England Journal of Medicine, Feb. 8, 2001, 344:6, p. 424-9): loading dose 15 mg/kg intravenously, follow by bolus dose of 10 mg/kg every 12 hours; after 48 hours, increase bolus dose to 15 mg/kg every 12 hours. Continue fomepizole until serum methanol, EG, DEG, TEG or EGBE are undetectable. The signs and symptoms of poisoning include anion gap metabolic acidosis, CNS depression, renal tubular injury, and possible late stage cranial nerve involvement. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. In severe poisoning, respiratory support with mechanical ventilation and positive end expiratory pressure may be required. Maintain adequate ventilation and oxygenation of the patient. If lavage is performed, suggest endotracheal and/or esophageal control. Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

Section 5 – Fire Fighting Measures

Suitable extinguishing media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Unsuitable extinguishing media: Do not use direct water stream. May spread fire.

Special hazards arising from the substance or mixture

Hazardous combustion products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Carbon monoxide. Carbon dioxide. Unusual Fire and Explosion Hazards: Container may rupture from gas generation in a fire situation. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Use water spray to cool fire exposed containers and fire affected zone until fire is out and danger of reignition has passed. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Do not use direct water stream. May spread fire. Move container from fire area if this is possible without hazard. Burning liquids may be moved by flushing with water to protect personnel and minimize property damage. Contain fire water run-off if possible. Fire water run-off, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special protective equipment for firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

Section 6 – Accidental Release Measures

Personal precautions, protective equipment and emergency procedures: Isolate area. Refer to section 7, Handling, for additional precautionary measures. Keep unnecessary and unprotected personnel from entering the area. Spilled material may cause a slipping hazard. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information. Spills or discharge to natural waterways is likely to kill aquatic organisms.

Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Sand. Sawdust. Collect in suitable and properly labeled containers. Wash the spill site with water. See Section 13, Disposal Considerations, for additional information.

Section 7 – Storage and Handling

Precautions for safe handling: Avoid contact with eyes. Do not swallow. Wash thoroughly after handling. Keep container closed. This material is hygroscopic in nature. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Conditions for safe storage: Protect from atmospheric moisture. Store in a dry place. Avoid prolonged exposure to heat and air. Store in the following material(s): Carbon steel. Stainless steel. Polypropylene. Polyethylene-lined container. Teflon. Glass-lined container. Aluminum. Plasite 3066 lined container. Plasite 3070 lined container. 316 stainless steel. See Section 10 for more specific information.

Storage stability

Storage temperature: Storage Period:

15 - 25 °C (59 - 77 °F) 12 Month

Section 8 – Exposure Controls/Personal Protection

Control parameters			
Exposure limits are listed be	low, if they exist.		
Component	Regulation	Type of listing	Value/Notation
Polyethylene glycol	US WEEL	TWA aerosol	10 mg/m3
Diethyltoluenediamine (DETDA)	Dow IHG	TWA	0.02 ppm
	Dow IHG	TWA	Absorbed via skin
Diethylene glycol	US WEEL	TWA	10 mg/m3
Castor oil	OSHA Z-1	TWA mist, respirable fraction	5 mg/m3

OSHA Z-1 TWA mist, total dust 15 mg/m3
Carbon black ACGIH TWA Inhalable 3 mg/m3

fraction

OSHA Z-1 TWA 3.5 mg/m3

Exposure controls

Engineering controls: Use local exhaust ventilation, or other engineering controls to maintain airborne levels below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, general ventilation should be sufficient for most operations. Local exhaust ventilation may be necessary for some operations.

Individual protection measures

Eye/face protection: Use safety glasses (with side shields).

Skin protection

Hand protection: Use gloves chemically resistant to this material when prolonged or frequently repeated contact could occur. Examples of preferred glove barrier materials include: Butyl rubber. Natural rubber ("latex"). Neoprene. Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl alcohol ("PVA"). Polyvinyl chloride ("PVC" or "vinyl"). Viton. Examples of acceptable glove barrier materials include: Nitrile/butadiene rubber ("nitrile" or "NBR"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Other protection: When prolonged or frequently repeated contact could occur, use protective clothing chemically resistant to this material. Selection of specific items such as faceshield, boots, apron, or full-body suit will depend on the task.

Respiratory protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. For most conditions no respiratory protection should be needed; however, if discomfort is experienced, use an approved air-purifying respirator. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

Section 9 – Physical Properties

Appearance

Odor

Physical state Liquid.
Color Black
pungent

Odor Threshold No test data available

pH Not applicable

Melting point/rangeNo test data availableFreezing pointNo test data availableBoiling point (760 mmHg)> 100°C (>212°F) Literature

Flash point closed cup > 150 °C (> 302 °F) Literature

Evaporation Rate No test data available

(Butyl Acetate= 1)

Flammability (solid, gas)

Lower explosion limit

Upper explosion limit

No test data available

No test data available

Vapor Pressure < 1 mmHg at 25 °C (77 °F) Estimated

Relative Vapor Density (air = 1) No test data available

Relative Density (water = 1) 1.03 at 25 °C (77 °F) / 25 °C *ASTM D891*

Water solubility Negligible

Partition coefficient:

noctanol/waterNo data availableAuto-ignition temperatureNo test data availableDecomposition temperatureNo test data available

Dynamic Viscosity 650 mPa.s at 25 °C (77 °F) *ASTM D4287*

Kinematic Viscosity No test data available

Explosive properties Not explosive

Oxidizing properties No

Molecular weight No test data available

NOTE: The physical data presented above are typical values and should not be construed as a specification.

Section 10 – Stability and Reactivity

Reactivity: no data available

Chemical stability: Stable under recommended storage conditions. See Storage, Section 7.

Possibility of hazardous reactions: Will not occur by itself.

Conditions to avoid: Product can oxidize at elevated temperatures. Generation of gas during

decomposition can cause pressure in closed systems.

Incompatible materials: Avoid contact with oxidizing materials. Avoid contact with: Strong acids. Strong bases. Avoid contact with metals such as: Brass. Zinc. Copper. Avoid unintended contact with isocyanates. The reaction of polyols and isocyanates generates heat.

Hazardous decomposition products: Decomposition products depend upon temperature, air supply and the presence of other materials. Decomposition products can include and are not limited to: Carbon dioxide. Alcohols. Ethers. Hydrocarbons. Ketones. Polymer fragments.

Section 11 – Toxicological Information

Toxicological information appears in this section when such data is available.

Acute toxicity

Acute oral toxicity

Oral toxicity is expected to be moderate in humans due to diethylene glycol even though tests with animals show a lower degree of toxicity. Ingestion of quantities (approximately 65 mL (2 oz.) for diethylene glycol or 100 mL (3 oz.) for ethylene glycol) has caused death in humans. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. The data presented are for the following material: Diethylene glycol. Excessive exposure may cause central nervous system effects, cardiopulmonary effects (metabolic acidosis), and kidney failure. May cause nausea and vomiting. May cause abdominal discomfort or diarrhea.

As product: Single dose oral LD50 has not been determined.

Acute dermal toxicity

Prolonged skin contact is unlikely to result in absorption of harmful amounts. Repeated skin exposure to large quantities may result in absorption of harmful amounts.

As product: The dermal LD50 has not been determined.

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility. With good ventilation,

single exposure is not expected to cause adverse effects. If material is heated or areas are poorly ventilated, vapor/mist may accumulate and cause respiratory irritation and symptoms such as headache and nausea. For narcotic effects: No relevant data found.

As product: The LC50 has not been determined.

Skin corrosion/irritation

Prolonged contact may cause slight skin irritation with local redness.

Serious eye damage/eye irritation

May cause slight eye irritation.

Sensitization

For skin sensitization:

No relevant data found.

For respiratory sensitization:

No relevant data found.

Specific Target Organ Systemic Toxicity (Single Exposure)

Evaluation of available data suggests that this material is not an STOT-SE toxicant.

Specific Target Organ Systemic Toxicity (Repeated Exposure)

Contains component(s) which have been reported to cause effects on the following organs in humans: Kidney.

Gastrointestinal tract.

Contains component(s) which have been reported to cause effects on the following organs in animals: Liver.

Pancreas.

Eye.

Thyroid.

Carcinogenicity

Lung fibrosis and tumors have been observed in rats exposed to high concentrations of very fine carbon black particles for their lifetime. Effects are believed to be due to overloading of the normal respiratory clearance mechanisms caused by the extreme study conditions. Rats may be particularly susceptible to particle clearance overload, resulting in lung injury and tumors. No increases in tumors were observed in male or female mice exposed under the same conditions. Diethylene glycol has been tested for carcinogenicity in animal studies and is not believed to pose a carcinogenic risk to man.

Teratogenicity

Diethylene glycol has caused toxicity to the fetus and some birth defects at maternally toxic, high doses in animals. Other animal studies have not reproduced birth defects even at much higher doses that caused severe maternal toxicity.

Reproductive toxicity

Diethylene glycol did not interfere with reproduction in animal studies except at very high doses.

Mutagenicity

For the component(s) tested: In vitro genetic toxicity studies were negative. Animal genetic toxicity studies were negative.

Aspiration Hazard

Based on physical properties, not likely to be an aspiration hazard.

COMPONENTS INFLUENCING TOXICOLOGY:

Polyethylene glycol

Acute oral toxicity

LD50, Rat, > 10,000 mg/kg

Acute dermal toxicity

LD50, Rabbit, > 20,000 mg/kg

Acute inhalation toxicity

Typical for this family of materials. LC50, Rat, 6 Hour, Aerosol, > 2.5 mg/l No deaths occurred at this concentration.

Diethyltoluenediamine (DETDA)

Acute oral toxicity

LD50, Rat, 500 - 1,000 mg/kg

Acute dermal toxicity

LD50, Rabbit, > 1,000 mg/kg

Acute inhalation toxicity

The LC50 value is greater than the Maximum Attainable Concentration.

Diethylene glycol

Acute oral toxicity

Oral toxicity is expected to be moderate in humans due to ethylene glycol even though tests with animals show a lower degree of toxicity. Ingestion of quantities (approximately 65 mL (2 oz.) for diethylene glycol or 100 mL (3 oz.) for ethylene glycol) has caused death in humans. May cause nausea and vomiting. May cause abdominal discomfort or diarrhea. Excessive exposure may cause central nervous system effects, cardiopulmonary effects (metabolic acidosis), and kidney failure. LD50, Rat, male, 19,600 mg/kg

Lethal Dose, Human, adult, 2 Ounces Estimated.

Acute dermal toxicity

LD50, Rabbit, 13,330 mg/kg

Acute inhalation toxicity

LC50, Rat, 4 Hour, dust/mist, > 4.6 mg/l The LC50 value is greater than the Maximum Attainable Concentration. No deaths occurred at this concentration.

Castor oil

Acute oral toxicity

May cause abdominal discomfort or diarrhea. May cause nausea and vomiting. The stimulant effects of this material are reportedly strong enough to induce uterine contractions in pregnant women. LD50, Guinea pig, > 50,000 mg/kg

Acute dermal toxicity

LD50, Rat, > 2,000 mg/kg

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility; single exposure is not likely to be hazardous.

The LC50 has not been determined.

Carbon black

Acute oral toxicity

LD50, Rat, > 8,000 mg/kg

Acute dermal toxicity

LD50, Rabbit, > 3,000 mg/kg No deaths occurred at this concentration.

Acute inhalation toxicity

LC50, Rat, 1 Hour, dust/mist, 27 mg/l No deaths occurred at this concentration.

Polyether polyol 1

Acute oral toxicity

Typical for this family of materials. LD50, Rat, > 2,000 mg/kg Estimated. No deaths occurred at this concentration.

Acute dermal toxicity

Typical for this family of materials. LD50, Rabbit, > 2,000 mg/kg Estimated.

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility; single exposure is not likely to be hazardous. Vapor from heated material or mist may cause respiratory irritation.

For narcotic effects: No relevant data found.

The LC50 has not been determined.

Polyether polyol 2

Acute oral toxicity

Typical for this family of materials. LD50, Rat, >1,000 mg/kg Estimated.

Acute dermal toxicity

Typical for this family of materials. LD50, Rat, > 2,000 mg/kg No deaths occurred at this concentration.

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility; single exposure is not likely to be hazardous. Vapor from heated material or mist may cause respiratory irritation. The LC50 has not been determined.

Polyether polyol 3

Acute oral toxicity

Typical for this family of materials. LD50, Rat, > 4,000 mg/kg Estimated. No deaths occurred at this concentration.

Acute dermal toxicity

Typical for this family of materials. LD50, Rabbit, > 10,000 mg/kg

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility; single exposure is not likely to be hazardous. Vapor from heated material or mist may cause respiratory irritation. The LC50 has not been determined.

Carcinogenicity

Component	List	Classification
Carbon black	IARC	Group 2B: Possibly carcinogenic to humans
	ACGIH	A3: Confirmed animal carcinogen with unknown relevance to
		humans.

Section 12 – Ecological Information

Ecotoxicological information appears in this section when such data is available.

Toxicity

Polyethylene glycol

Acute toxicity to fish

Material is practically non-toxic to aquatic invertebrates on an acute basis (LC50/EC50 > 100 mg/L).

LC50, Pimephales promelas (fathead minnow), static test, 96 Hour, > 73,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

LC50, Daphnia magna (Water flea), static test, 48 Hour, > 10,000 mg/l, OECD Test Guideline 202 or Equivalent

Diethyltoluenediamine (DETDA)

Acute toxicity to fish

Material is highly toxic to aquatic organisms on an acute basis (LC50/EC50 between 0.1 and 1 mg/L in the most sensitive species tested).

LC50, Leuciscus idus (Golden orfe), static test, 48 Hour, 194 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

EC50, Daphnia magna (Water flea), static test, 48 Hour, 0.5 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants

ErC50, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate, 100 mg/l, OECD Test Guideline 201

Toxicity to bacteria

EC10, Bacteria, 16 Hour, 170 mg/l

Diethylene glycol

Acute toxicity to fish

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

LC50, Pimephales promelas (fathead minnow), flow-through test, 96 Hour, 75,200 mg/l,

OECD Test Guideline 203 or Equivalent

Toxicity to bacteria

EC50, activated sludge, 3 Hour, > 1,000 mg/l, OECD 209 Test

Castor oil

Acute toxicity to fish

Not expected to be acutely toxic to aquatic organisms.

Carbon black

Acute toxicity to fish

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

LC50, Leuciscus idus (Golden orfe), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates

EC50, Daphnia magna (Water flea), 24 Hour, > 5,600 mg/l, OECD Test Guideline 202 or Equivalent

Polyether polyol 1

Acute toxicity to fish

For this family of materials:

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Polyether polyol 2

Acute toxicity to fish

For this family of materials:

Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 > 100 mg/L in the most sensitive species tested).

Chronic toxicity to aquatic invertebrates

NOEC, Daphnia magna (Water flea), semi-static test, 21 d, mortality, >= 10 mg/l

LOEC, Daphnia magna (Water flea), semi-static test, 21 d, mortality, > 10 mg/l

Polyether polyol 3

Acute toxicity to fish

Based on information for a similar material:

Material is practically non-toxic to aquatic organisms on an acute basis

(LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Persistence and degradability

Polyethylene glycol

Biodegradability: Biodegradation under aerobic static laboratory conditions is high (BOD20 or BOD28/ThOD > 40%).

Theoretical Oxygen Demand: 1.71 mg/mg **Chemical Oxygen Demand:** 1.76 mg/mg

Biological oxygen demand (BOD)

Incubation	BOD
Time	
5 d	3 %
10 d	28 %
20 d	64 %

Diethyltoluenediamine (DETDA)

Biodegradability: Material is not readily biodegradable according to OECD/EEC guidelines.

10-day Window: Fail **Biodegradation:** < 1 % **Exposure time:** 28 d

Method: OECD Test Guideline 301D or Equivalent **Theoretical Oxygen Demand:** 3.23 mg/mg

Diethylene glycol

Biodegradability: Material is readily biodegradable. Passes OECD test(s) for ready

biodegradability. Material is ultimately biodegradable (reaches > 70% mineralization in OECD

test(s) for inherent biodegradability).

10-day Window: Pass Biodegradation: 90 - 100 % Exposure time: 20 d

Method: OECD Test Guideline 301A or Equivalent

10-day Window: Not applicable **Biodegradation:** 82 - 98 % **Exposure time:** 28 d

Method: OECD Test Guideline 302C or Equivalent **Theoretical Oxygen Demand:** 1.51 mg/mg Estimated.

Castor oil

Biodegradability: For the major component(s): Biodegradation may occur under aerobic conditions (in the presence of oxygen).

Carbon black

Biodegradability: Biodegradation is not applicable.

Polyether polyol 1

Biodegradability: For this family of materials: Material is readily biodegradable. Passes OECD test(s) for ready biodegradability.

Polyether polyol 2

Biodegradability: For this family of materials: Based on stringent OECD test guidelines, this material cannot be considered as readily biodegradable; however, these results do not necessarily mean that the material is not biodegradable under environmental conditions. Material is ultimately biodegradable (reaches > 70% mineralization in OECD test(s) for inherent biodegradability).

Polyether polyol 3

Biodegradability: Based on information for a similar material: Biodegradation under aerobic laboratory conditions is below detectable limits (BOD20 or BOD28/ThOD < 2.5%).

Bioaccumulative potential

Polyethylene glycol

Bioaccumulation: No bioconcentration is expected because of the relatively high water solubility.

Diethyltoluenediamine (DETDA)

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient: n-octanol/water(log Pow): 1.17 Measured

Bioconcentration factor (BCF): 3 Estimated.

Diethylene glycol

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). **Partition coefficient:** n-octanol/water(log Pow): -1.98 at 20 °C Estimated.

Bioconcentration factor (BCF): 100 Fish. Measured

Castor oil

Bioaccumulation: No data available for this product. For the major component(s): Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Carbon black

Bioaccumulation: No relevant data found.

Polyether polyol 1

Bioaccumulation: For this family of materials: No bioconcentration is expected because of the relatively high molecular weight (MW greater than 1000).

Polyether polyol 2

Bioaccumulation: For this family of materials: No bioconcentration is expected because of the relatively high water solubility.

Polyether polyol 3

Bioaccumulation: No bioconcentration is expected because of the relatively high molecular weight (MW greater than 1000).

Mobility in soil

Polyethylene glycol

No data available.

Diethyltoluenediamine (DETDA)

Potential for mobility in soil is low (Koc between 500 and 2000).

Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.

Partition coefficient(Koc): 551.2 Estimated.

Diethylene glycol

Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.

Potential for mobility in soil is very high (Koc between 0 and 50).

Partition coefficient(Koc): < 1 Estimated.

Castor oil

For the major component(s):

Potential for mobility in soil is low (Koc between 500 and 2000).

Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.

Carbon black

No relevant data found.

Polyether polyol 1

No data available.

Polyether polyol 2

No relevant data found.

Polyether polyol 3

No data available.

Section 13 - Disposal Consideration

Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer. Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section10 Regulatory Information, MSDS Section 15

DOT

Not regulated for transport

Classification for SEA transport (IMO-IMDG):

Proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,

N.O.S.(Diethylmethylbenzenediamine)

UN number UN 3082

Class 9 III

Marine pollutant Diethylmethylbenzenediamine

Transport in bulk Consult IMO regulations before transporting ocean bulk

according to Annex I or II of MARPOL 73/78 and the

IBC or IGC Code

Classification for AIR transport (IATA/ICAO):

Proper shipping name Environmentally hazardous substance, liquid,

n.o.s.(Diethylmethylbenzenediamine)

UN number UN 3082

Class 9
Packing group III

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

Section 15 – Regulatory Information

OSHA Hazard Communication Standard

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Acute Health Hazard

Chronic Health Hazard

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Pennsylvania Worker and Community Right-To-Know Act:

The following chemicals are listed because of the additional requirements of Pennsylvania law:

ComponentsCASRNDiethylene glycol111-46-6Castor oil8001-79-4

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

WARNING: This product contains a chemical(s) known to the State of California to cause cancer.

Components	CASRN
Carbon black	1333-86-4
1,4-Dioxane	123-91-1
Formaldehyde	50-00-0
Acetaldehyde	75-07-0
Ethylene oxide	75-21-8
Propylene oxide	75-56-9

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

WARNING: This product contains a chemical(s) known to the State of California to cause birth defects or other reproductive harm.

ComponentsCASRNEthylene oxide75-21-8Ethylene glycol monomethyl ether109-86-4

United States TSCA Inventory (TSCA)

All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

Section 16 - Other Information

Product Literature

Additional information on this product may be obtained by calling your sales or customer service contact.

Revision

Identification Number: 101207274 / A001 / Issue Date: 04/21/2015 / Version: 2.0

Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

Absorbed via skin Absorbed via skin

ACGIH USA. ACGIH Threshold Limit Values (TLV)

Dow IHG Dow Industrial Hygiene Guideline

OSHA Z-1 USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for

Air Contaminants

TWA 8-hour, time-weighted average

USA. Workplace Environmental Exposure Levels (WEEL)

Information Source and References

This SDS is prepared by Product Regulatory Services and Hazard Communications Groups from information supplied by internal references within our company.

Oak Ridge Foam & Coating Systems, Inc. urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.